

The Niels Henrik Abel Contest 1994–95 FINAL

Problem 1

- a) Let f(1) = 1, $f(1) + f(2) + f(3) + \cdots + f(n) = n^2 \cdot f(n)$ for all natural numbers n. What is f(1995)?
- **b)** Prove that if $(x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = 1$, then x + y = 0.

Problem 2

a) Two circles touch a line l in the points A and B, and each other in a point P. The line AP intersects the other circle in C. Prove that BC is normal to l.

b) Two circles with the same radii intersect in two different points: P and Q. Draw a line through P which is not tangential to any of the circles. In addition to P, this line intersects the circles in points A and B. Prove that the perpendicular bisector of AB passes through Q.

Problem 3

Prove that there exists an ordering of the natural numbers, ie. a sequence x_i where $i=1,2,3,4,\ldots$ such that every natural number occurs exactly once, and so that the sums $\sum_{i=1}^{n} 1/x_i$ for $n=1,2,3,4,\ldots$ include all natural numbers. Ie. for every natural number m, there exists an n so that $m=\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\cdots+\frac{1}{x_n}$.

Problem 4

Let n be a natural number, and let $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n > 0$. Prove that

$$\left(\sum_{i=1}^n (x_i + y_i)^2\right) \cdot \left(\sum_{i=1}^n \frac{1}{x_i y_i}\right) \ge 4n^2.$$

Ie. that
$$((x_1 + y_1)^2 + \dots + (x_n + y_n)^2) \cdot (\frac{1}{x_1 y_1} + \dots + \frac{1}{x_n y_n}) \ge 4n^2$$
.