Problem 1

What is the sum of the integers from 1 to 47 (inclusive) which are not divisible by 6 ?

Problem 2

What is $2020!-2019!\cdot 2019-2018!\cdot 2018-\ldots-2!\cdot 2$? Remember that $n!=1 \cdot 2 \cdot \ldots \cdot n$.

Problem 3

An equilateral triangle with side length 40 is divided into small equilateral triangles with side length 1 . The small triangles are coloured black and white, so that any two small triangles with a common side have different colours. There are more black triangles than white ones. How many of the small triangles are white?

Problem 4

A parallelogram has corners in the points $(2,0),(0,4),(5,79)$ and $(3,83)$. A line passing through the point $(2,34)$ divides the parallelogram in two pieces of equal area. What is the slope of this line?

Problem 5

Sigrid, Petra and Odd are playing a game. In each round they throw two dice, and each receives one or zero points depending on the result. Sigrid gets a point if the sum is even, Petra gets a point if the product is even, while Odd gets a point if at least one of the dice shows an odd number. After 300 throws Sigrid has 147 points, and Petra has 226 . How many points does Odd have?

Problem 6

What is the sum of the lengths of the hypothenuses of all right triangles with integer sides having a side of length 12 ? Two triangles which are congruent or mirror images are to be counted only once in the sum.

Problem 7

How many integers between 10000 and 99999 contain 777 (with no digits in between) at least once when written as decimal numbers?

Problem 8

The function f satisfies $2 f(x)-f(1-x)=x^{2}+5 x-1$ for all real numbers x. What is $f(20)$?

Problem 9

What is the largest number of odd numbers we can choose between 0 and 2020 , so that none of the chosen numbers divides any of the others?

Problem 10

A right triangle $A B C$ has $\angle A=60^{\circ}, \angle B=30^{\circ}$, and $|A C|=11$. The foot of the perpendicular from C to the line $A B$ is D. The midpoint of $C D$ is M, and the midpoint of $C B$ is N. The line $A M$ intersects $C B$ in X, and the line $A N$ intersects $C D$ in Y. Determine the value of $(|X B|+2|Y D|)^{2}$.

