The Niels Henrik Abel mathematics competition: Final 2018-2019

5 March 2019 (English)

In the final round of the Abel contest there are four problems (six subproblems) to be solved in four hours. You are required to justify your answers. Start a new sheet of paper for each of the four problems.

You can score up to 10 points for each problem. The maximum score is thus 40.

No aids other than writing paper, writing tools and bilingual dictionaries are permitted.

Problem 1

You have an $n \times n$ grid of empty squares. You place a cross in all the squares, one at a time. When you place a cross in an empty square, you receive $i+j$ points if there were i crosses in the same row and j crosses in the same column before you placed the new cross. Which are the possible total scores you can get?

Problem 2

Find all pairs (m, n) of natural numbers such that $m n-1 \mid n^{3}-1$.

Problem 3

a. Three circles are pairwise tangent, with none of them lying inside another. The centres of the circles are the corners of a triangle with circumference 1. What is the smallest possible value for the sum of the areas of the circles?
b. Find all real functions f defined on the real numbers except zero, satisfying $f(2019)=1$ and

$$
f(x) f(y)+f\left(\frac{2019}{x}\right) f\left(\frac{2019}{y}\right)=2 f(x y)
$$

for all $x, y \neq 0$.

Problem 4

The diagonals of a convex quadrilateral $A B C D$ intersect at E. The triangles $A B E, B C E, C D E$ and $D A E$ have centroids K, L, M and N, and orthocentres Q, R, S and T. Show that the quadrilaterals $Q R S T$ and $L M N K$ are similar.

