Niels Henrik Abels matematikkonkurranse
 2007-2008

Final round 6 March 2008

In the final round of the Abel contest there are 4 problems (8 subproblems) to be solved in 4 hours. You are required to show the reasoning behind your answers. Start a new sheet of paper for each problem.

The maximum score is 10 points for each problem. The total score is thus between 0 and 40.

No aids other than writing paper, writing tools and bilingual dictionaries are permitted.

Problem 1

Let $s(n)=\frac{1}{6} n^{3}-\frac{1}{2} n^{2}+\frac{1}{3} n$.
(a) Show that $s(n)$ is an integer whenever n is an integer.
(b) How many integers n with $0<n \leq 2008$ are such that $s(n)$ is divisible by 4 ?

Problem 2

(a) We wish to lay down boards on a floor with width B in the direction across the boards. We have n boards of width b, and B / b is an integer, and $n b \leq B$. There are enough boards to cover the floor, but the boards may
 have different lengths. Show that we can cut the boards in such a way that every board length on the floor has at most one join where two boards meet end to end.
(b) $\quad A$ and B play a game on a square board consisting of $n \times n$ white tiles, where $n \geq 2$. A moves first, and the players alternate taking turns. A move consists of picking a square consisting of 2×2 or 3×3 white tiles and colouring all these tiles black. The first player who cannot find any such squares has lost. Show that A can always win the game if A plays the game right.

Abelkonkurransen 2007-2008
Final round

Problem 3

(a) Let x and y be positive numbers such that $x+y=2$. Show that

$$
\frac{1}{x}+\frac{1}{y} \leq \frac{1}{x^{2}}+\frac{1}{y^{2}} .
$$

(b) Let x, y, and z be positive numbers such that $x+y+z=2$. Show that

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{9}{4} \leq \frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}
$$

Problem 4

Note that the two subproblems (a) and (b) are unrelated, and the triangles in these subproblems do not need to be the same.
(a) Three distinct points A, B, and C lie on a circle with centre at O. The triangles $A O B, B O C$, and $C O A$ have equal area. What are the possible magnitudes of the angles of the triangle $A B C$?
(b) A point D lies on the side $B C$, and a point E on the side $A C$, of the triangle $A B C$, and $B D$ and $A E$ have the same length. The line through the centres of the circumscribed circles of the triangles $A D C$ and $B E C$ crosses $A C$ in K and $B C$ in L. Show that $K C$ and $L C$ have the same length.

